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Abstract

In the paper we present a fast and accurate method for modeling solvationproperties of

organic molecules in water with main focus on predicting solvation (hydration) free energies

of small organic compounds. The method is based on a combination of (i) a molecular theory,

three-dimensional Reference Interaction Sites Model (3DRISM); (ii) fast multi-grid algorithm

for solving the high-dimensional 3DRISM integral equations; (iii) recently introduced uni-

versal correction (UC) for the 3DRISM solvation free energies by properly scaled molecular

partial volume (3DRISM-UC, Palmer et al., J. Phys.: Condens. Matter 22, 492101, (2010) ). A

fast multi-grid algorithm is the core of the method because it helps to reduce thehigh compu-

tational costs associated with solving the 3DRISM equations. To facilitate future applications

of the method we performed benchmarking of the algorithm on a set of several model solutes
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in order to find optimal grid parameters and to test the performance and accuracy of the algo-

rithm. We have shown that the proposed new multi-grid algorithm is in average 24 times faster

than the simple Picard method and at least 3.5 times faster than the MDIIS method which is

currently actively used by the 3DRISM community (e.g. the MDIIS method has been recently

implemented in a new 3DRISM implicit solvent routine in the recent release of the Amber-

Tools 1.4 molecular modeling package (Luchko et al. J. Chem. Theor. Comput., 6, 607-624

(2010)). Then we have benchmarked the multi-grid algorithm with chosen optimal parameters

on a set of 99 organic compounds. We show that average computational timerequired for one

3DRISM calculation is 3.5 minutes per a small organic molecule (10-20 atoms) on astandard

personal computer. We also benchmarked predicted solvation free energy values for all of the

compounds in the set against the corresponding experimental data. We show that by using

the proposed multi-grid algorithm and the 3DRISM-UC model it is possible to obtain good

correlation between calculated and experimental results for solvation freeenergies of aqueous

solutions of small organic compounds (correlation coefficient 0.97, rootmean square deviation

<1 kcal/mol).

Introduction

Integral equation theory of liquids (IETL) is a useful method for theoretical studies of structural

and thermodynamical properties of liquids. IETL describesthe liquid structure in terms of cor-

relation functions. The central equation in IETL is the Ornstein-Zernike (OZ) equation.1 In its

general molecular form this equation operates with six-dimensional correlation functions even in

the case of isotropic molecular systems.2 Because of the high computational complexity, an effi-

cient numerical solution of the high-dimensional molecular OZ equation is still an open problem.

Therefore, there have been developed some approximate models that help to reduce dimension-

ality of integral equations. Most popular model in this fieldis the Reference Interaction Site

Model (RISM).3 One of the man approximations behind the original RISM model is that the high-

dimensional molecular correlation functions are represented by a set of spherically symmetric
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site-site functions. That approximation reduces the original high-dimensional problem to a set of

(technically) one-dimensional equations. Due to this fact, the RISM theory is also referenced as

1DRISM.

From a computational point of view it is relatively inexpensive to solve the 1DRISM equations

numerically for small molecular solutes (<102 atoms) with modern computers; and, typically, so-

lutions of the 1DRISM equations give a qualitatively correctdescription of the solvent structure

around solute. To compare, it was shown that RISM solvent representation is more accurate than

continuum solvent representation in continuum electrostatics models.4–6 In addition, RISM theory

gives end-point expressions for solvation free energy (SFE) that avoid thermodynamical integra-

tion.7,8 We note though that the original formulae for SFE calculations7,8 provide only qualitative

predictions of trends in the differences of SFEs for different compounds.9 Recently there were

proposed several methods for parameterizing RISM solvationfree energy (SFE) calculations that

predict SFEs with an accuracy around 1 kcal/mol.9–13However, decomposition of molecular func-

tions to site-site spherically symmetric functions leads to inaccurate representation of molecular

structure. Therefore, a considerable number of empirical corrections is necessary to achieve good

accuracy of predictions.

Another approximation of the Ornstein-Zernike equation isthe so-called three-dimensional

RISM (3DRISM)14,15 where a solute molecule is represented as a three dimensional object. The

3DRISM operates with a set of three-dimensional equations and that model provides better spa-

tial description of solute-solvent correlations than the 1DRISM. The 3DRISM method is currently

widely used in biochemical applications for the description of solvation properties of biomolecules.16–19

Another promising application of the 3DRISM theory is computational screening of large databases

of drug candidates. As it was recently shown, a 3DRISM-based method accurately predicts ther-

modynamic parameters of hydrated organic molecules including drug-like molecules.20,21 How-

ever, for small molecules, numerical solution of the multidimensional 3DRISM equations requires

significantly more computational time than solution of the 1DRISM equations.21 High compu-

tational expenses of 3DRISM calculations is a real bottleneck of this method that inhibits wider
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applications of this technique. In the current work we show that this problem can be overcomed

by using of highly efficient multi-grid algorithms.

Coming back to the history of the IETL, the first algorithm usedfor solving OZ-like integral

equations was presumably the Picard iteration method.22 This method is easy to implement. How-

ever, it has comparably low convergence rate. Therefore, there were proposed several alternative

iteration schemes in order to improve the convergence rate such as the Newton-Raphson method

(NR),23 the NR-GMRES (Generalized minimal residual method) algorithm,24 the combined NR-

DIIS(direct inversion in iterative subspace) iteration,25 the Modified DIIS (MDIIS) method26 and

the vector extrapolation method.27 Recently an efficient 3DRISM equations solver which uses the

MDIIS algorithm was implemented in the Amber molecular modeling software.18

Another way to increase the speed of calculations is to use two-scale and multi-scale meth-

ods.28–34However, from a mathematical point of view it is necessary touse all advantages of the

multi-scale approach. From the applied mathematics perspective, there is a general ’multi-grid’

(MG) technique that is well investigated theoretically andit is rigorously proven to be effective.35

These days the multi-grid technique is widely used in several areas of computational chemistry

(particularly in quantum chemistry and material sciences).36–39 In spite of that, only recently the

multi-grid methods attracted attention of the RISM community.40–42 In our recent work we have

shown, that the multi-grid technique allows one to increasethe performance of the numerical

1DRISM solver up to dozen times.42 One of the main goals of the current work is to develop a

fast algorithm for solving the 3DRISM equations, because thelatter have been proven to be more

advanced from a theoretical point of view.21,43–47

We note that general theoretical framework of the multi-grid method for solving RISM equa-

tions proposed in Ref. 42 allows one to combine this method with other different numerical solvers.

In our work we investigate the numerical performance of two modifications of the multi-grid

3DRISM algorithm where the multi-grid is combined with (i) the Picard iteration method (MG-

Picard); and (ii) with the MDIIS method (MG-MDIIS) respectively. By benchmarking of these

methods on a set of model compounds we determine the optimal grid parameters for solvation
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(hydration) free energy calculations. We test the numerical performance of the proposed methods

and compare it to the performance of the standard Picard iteration method and the MDIIS method.

Additionally, we benchmark the speed and accuracy of the algorithm on an extended set of 99

organic compounds. Firstly, we test computational performance of the algorithm. Then we test the

accuracy of the SFE calculations with the Universal Correction model (UC) as proposed in Ref.

10. To check the accuracy of the free energy results we calculate the correlation coefficient and

root mean square deviation between calculated and experimental data.

Method

3D RISM

In our work we use the Kovalenko-Hirata formulation of the 3DRISM theory44,48 in order to de-

scribe infinitely diluted solutions of small organic solutemolecules. Solvent (water) molecules are

described by the 1DRISM approximation, while a solute molecule is a three-dimensional object.

Structure of the solvent is described by the total and directcorrelation functionshα(r), cα(r) where

α indicates a solvent site. The 3DRISM equations are written inthe following way:

hα(r) =
Nsolvent

∑
ξ=1

∫

R3
cξ (r)χξ α(r − r)dr (1)

whereNsolvent is the number of solvent sites,χξ α(r) is the solvent susceptibility function for sites

ξ andα. Solvent susceptibility functionsχξ α(r) are defined as following:

χξ α(r) = ωξ α(r)+ρhsolv
ξ α (r), (2)

wherer = |r |, ωξ α(r) = δξ α +(1−δξ α)δ (r − rξ α)/(4πr2
ξ α), rξ α is the distance between the sites

ξ andα of a solvent molecule,hsolv
ξ α (r) is the total site-site correlation function of the solvent sites

ξ andα, δξ α is the Kronecker delta andδ (r) is the Dirac delta function. In this paper we used the

functionshsolv
ξ α (r) calculated in Ref. 49.
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Eq. (1) is completed by closure relations:

hα(r) = e−βUα ((r))+hα (r)−cα (r)+Bα (r)−1, (3)

whereβ = 1/kBT, kB is the Boltzmann constant,T is the temperature,Uα(r) is the interaction

potential corresponding to a solute siteα, Bα(r) is the bridge functional.

To use iterative solvers we rewrite Eq. (1) in the following form:50

γα(r) =
Nsolvent

∑
ξ=1

∫

R3
C [γξ (r

′− r)] ·χξ α(r
′)dr ′+θα(r)−C [γα(r)] (4)

whereγα(r) = hα(r)−cS
α(r), cS

α(r) = cα(r)+βUL
α(r), Uα(r) =US

α(r)+UL
α(r), US

α(r) is a short

range potential,UL
α(r) is a long range potential,θα(r) = −β ∑ξ

∫

R3 UL
ξ (r − r ′)χξ α(r

′)dr ′, C [·] is

a closure (bridge) functional.

We use interaction potentials which are superpositions of the site-site interaction potentials:

US
α(r) =

Nsolute

∑
s=1

uS
sα(|r − rs|); (5)

UL
α(r) =

Nsolvent

∑
s=1

uL
sα(|r − rs|); (6)

wherers is the position of a solute sites with respect to the center of a molecule,Nsolute is the

number of solute sites. In our work the site-site potentialscontain Lennard-Jones and Coulomb

part. Pair Lennard-Jones parameters are obtained from the atomic LJ parameters by using the

Lorentz-Berthelot mixing rules:

σsα =
1
2
(σs+σα) εsα =

√
εsεα (7)

To avoid divergence of the algorithm due to the long range behavior of the interaction potentials we

separate the short range and the long range of the potentialsthat we then treat separately by using
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the Ng procedure.51 We use the atomic units for distance and energy Bohr=0.52918·10−10m and

Hartree=4.35974394·1018 J. This allows us to avoid scaling coefficients in the representation of

the Coulomb potential. Thus expressions for the short-rangeand long-range potentials are written

as following:

uS
sα(r) = uLJ(short)

sα (r)+uC
sα(r)(1−erf(τr)) (8)

uL
sα(r) = uLJ(long)

sα (r)+uC
sα(r)erf(τr) (9)

whereuC
sα(r) is the Coulomb component of the site-site potential, erf(r) =

∫ r
−∞ e−t2

dt, τ=0.5

Bohr−1, uLJ(short)
sα (r), uLJ(long)

sα (r) are short-range and long-range components of the Lennard-Jones

potential respectively. The latter are defined by the following relations:

uLJ(short)
sα (r) =











uLJ
sα(r)−uLJ

sα(Rcut) when r < Rcut

0 otherwise
(10)

uLJ(long)
sα (r) = uLJ

sα(r)−uLJ(short)
sα (r) (11)

whereuLJ
sα(r) is a Lennard-Jones component of a site-site potential,Rcut=8Å .

In the article we use the Kovalenko-Hirata (KH) closure, which is defined as following:52

C [γα(r)] =











e−βUS
α (r)+γα (r)− γα(r)−1 when −βUS

α(r)+ γα(r)> 0

−βUS
α(r) otherwise

(12)

In the numerical representation of Eq. (4) the functionsγα(r), χξ α(r), θα(r) are defined by

their values in the grid points of an uniform Cartesian grid. Agrid is defined by two parameters:

spacingandbuffer. Spacingis the smallest distance between the grid points andbuffer is the min-

imal distance from the solute atoms to the boundaries of the grid (see Figure 1 for explanations).

At first glance, such parameterization may seem to be inconvenient from a theoretical point of

view because the same buffer and spacing parameters may givedifferent grids for different so-

lutes. However, our work is mostly oriented towards future practical applications of the method
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and in practical applications we are interested in the accuracy of calculations for different cutoff

distances of the correlation functions; and these cutoff distances for a Cartesian grid are defined

by the buffer parameter. Using the same buffer parameter we can adjust the size and the shape of

the grid preserving a constant cutoff of the solvent correlation functions for different solutes. That

provides us a straightforward way to control the accuracy ofcalculations.

Figure 1: Spacingis the minimal distance between the grid points,buffer is the minimal distance
from the solute atoms to the boundaries of the grid

We denote the forward and the inverse Fourier transforms on the grid G as FG [·], F
−1
G

[·]

correspondingly. Then a discrete analogue of Eq. (4) reads as:

ΓΓΓG = F
−1
G

[

X̂ ·FG

[

C

[

ΓΓΓG
]]]

+ΘΘΘG −C

[

ΓΓΓG
]

(13)

where ΓΓΓG =
(

γγγG
1 , . . . ,γγγ

G
Nsolvent

)T
, ΘΘΘG =

(

θθθG
1 , . . . ,θθθ

G
Nsolvent

)T
, X̂G = [χ̂χχG

ξ α ]Nsolvent×Nsolvent, χ̂χχG

ξ α =

FG [χχχξ α ], upper indexG means that functions are given by their values in the grid points of the

grid G .
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Eq. (13) can be written in a more compact way:

ΓΓΓG = F [ΓΓΓG ] (14)

whereF [ΓΓΓG ] = F
−1
G

[

X̂ ·FG

[

C

[

ΓΓΓG
]]]

+ΘΘΘG −C

[

ΓΓΓG
]

.

The Picard iteration method is defined by the following recurrent formula:

ΓΓΓG
n+1 = (1−λ )ΓΓΓG

n +λF [ΓΓΓG
n ] (15)

whereΓΓΓG
n is the n-th step approximation,λ is the coupling parameter.

DIIS and MDIIS iteration

Direct inverse in the iterative subspace (DIIS) method is aniteration method initially introduced

to improve convergence of Schrödinger equation solvers.53 Later modified DIIS (MDIIS) method

was applied to the 3DRISM equations.26 In the DIIS method on the n-th iteration step one finds

an approximate solutionΓΓΓG
∗ which is a linear combination of the approximations on thek previous

iteration steps:

ΓΓΓG
∗ =

k

∑
i=1

CiΓΓΓG
n−k+i (16)

Below we describe the DIIS and MDIIS algorithms which solve the 3DRISM equations in the

form (Eq. (14)). We also plan to use the MDIIS algorithm in ourmulti-grid scheme. This will

require to consider a generalized task in the following form:

ΓΓΓG = F [ΓΓΓG ]+DG (17)

whereDG =
(

dG
1 , . . . ,d

G
Nsolvent

)T
is an arbitrary vector of corrections. The vector of corrections will

be calculated during the multi-grid algorithm when we move from one grid to another one. This

procedure is described in the next section of the paper. In the current section we describe one-grid
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solvers where vectorDG is given. Below we describe the DIIS and MDIIS algorithms for ageneral

case of an arbitrary vectorD having in mind that the 3DRISM equations (Eq. (14)) correspond to

the caseDG ≡ 0.

In the DIIS method the coefficientsCi in Eq. (16) are chosen to minimize the norm of the

residue∆G
∗ = ΓΓΓG

∗ −F [ΓΓΓG
∗ ]−DG . If one assumes linearity of the operatorF (which for smooth

operators is locally true) then the task reduces to the following system of linear equations:53



















a11 . . . a1k −1
...

...
... −1

ak1 . . . akk −1

1 . . . 1 0





































C1

...

Ck

λ



















=



















0
...

0

1



















(18)

whereai j =
∫

R3 ∆i(r)∆ j(r)dr , ∆i(r) = ΓΓΓG
n−k+i −F [ΓΓΓG

n−k+i]−DG . In the DIIS methodΓΓΓG
∗ is used

as a solution approximation on the (n+1)-st iteration step.However, such a procedure can lead

to a linearly dependent system of equations. The MDIIS iteration method avoids this problem by

adding a weighted residue to the (n+1)-st step approximation:26

ΓΓΓ′′′G = ΓΓΓG
∗ +η

(

F [ΓΓΓG
∗ ]+DG −ΓΓΓG

∗
)

(19)

whereη is a weight for the residue. In combination with the standarddamping technique the

solution approximation on the (n+1)-st stepΓΓΓG
n+1 in the MDIIS method can be found by using the

following formula:

ΓΓΓG
n+1 = (1−λ )ΓG

n +λΓΓΓG
∗ +λη

(

F [ΓΓΓG
∗ ]+DG −ΓΓΓG

∗
)

(20)

In our work we useλ = 0.5, η = 0.3. These values are sub-optimal and allow to ensure stability

of the algorithm and in the same time retain reasonable performance. Detailed description of the

dependence of the computation time onλ andη parameters is given in the supporting information
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to the paper.

To make notations shorter we introduce the MDIIS operatorΞ[·, ·]:

Ξ[ΓG
n ,D

G ] = (1−λ )ΓG
n +λΓΓΓG

∗ +λη
(

F [ΓΓΓG
∗ ]+DG −ΓΓΓG

∗
)

(21)

Multi-grid

We use the multi-grid technique in order to decrease the computation time spent on solving the

3DRISM equations. General description of the multi-grid theory can be found in the book.35 Here

we give only short description of the multi-grid method applied to the 3DRISM equations. More

information on the theoretical background of the method canbe found in our recent paper where a

similar computational framework for an efficient algorithmfor solving the 1D-RISM equations is

described.42

In the multi-grid method the numerical task is discretized on several grids with the same buffer

but different spacings. Grids with smaller numbers of points and larger spacings are calledcoarse

grids, grids with larger number of the points and smaller spacings are calledfinegrids. In our work

we consider grids where number of points differ by the factorof 2n, wheren= 0,1,2, ....

We introduce operatorsp[·], r[·], which convert a coarse grid to a finer one and vice versa. We

introduce an operatorR[·] which map a fine-grid function to a coarse grid.

R[ΓΓΓG ] = ΓΓΓr[G ] (22)

Also we introduce an operatorP[·] which interpolates a coarse-grid function to a fine grid:

P[ΓΓΓr[G ]] = ΓΓΓG
111 (23)

In the paper we use the linear interpolation operator.
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To make notations simpler we introduce an operatorΛ[·; ·]:

Λ[ΓΓΓG ;DG ] = (1−λ )ΓΓΓG +λ
(

FG [ΓΓΓG ]+DG
)

. (24)

A multi-grid iterative algorithm which solves the task Eq. (17) can be written in the following

form:

ΓΓΓG
n+1 = M

l
G

[

ΓΓΓG
n ;DG

]

, (25)

whereΓΓΓG
n is the n-th step approximation,M l

G
[·; ·] is a multi-grid operator which performs one

multi-grid iteration step of the depthl on the gridG . To calculate the multi-grid operator of the

depthl = 0 one performsm0 one-grid iteration steps on the gridG . The multi-grid technique can

be applied to both: the Picard and the MDIIS iteration methods. We define a generalized operator

Φ[·; ·] in the following way:

Φ[ΓΓΓG
n ;DG ] =











Λ[ΓΓΓG
n ;DG ] for MG-Picard method

Ξ[ΓΓΓG
n ;DG ] for MG-MDIIS method

(26)

Then the multi-grid operator of the depthl = 0 is defined as:

M
0
G

[

ΓΓΓG ;DG
]

= Φm0

[

ΓΓΓG ;DG
]

(27)

For l > 0, given the n-th step approximationΓΓΓG
n and the correction vectorDG , the multi-grid

operatorM l
G
[·; ·] is calculated by the following algorithm:

Input parameters: ΓΓΓG
n , DG , l

Result: ΓΓΓG
n+1 = M l

G
[ΓΓΓG

n ;DG ]

1. Performν1 Picard iteration steps on the fine grid (in our workν1 = 5):

ΓΓΓ′′′G = Λν1

[

ΓΓΓG
n ;DG

]
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2. Move to the coarse gridr[G ]:

ΓΓΓr[G ]
(0) = R[ΓΓΓ′′′G ];

3. Calculate the coarse-grid correction:

Er[G ] = R
[

F [ΓΓΓ′′′G ]
]

−F [ΓΓΓr[G ]
(0) ]

4. Perform recursivelyµ multi-grid iteration steps of depthl −1 on the coarse-grid (in our work

µ=1):

ΓΓΓr[G ]
(µ) =

(

M
l−1
r[G ]

)µ [
ΓΓΓr[G ]
(0) ;R[DG ]+Er[G ]

]

5. Correct the fine-grid solution using the coarse-grid results:

ΓΓΓ′′′′′′G = ΓΓΓ′′′G +P
[

ΓΓΓr[G ]
(µ) −ΓΓΓr[G ]

(0)

]

6. Performν2 Picard iteration steps on the fine grid (in our workν2 = 0):

ΓΓΓG
n+1 = Λν2

[

ΓΓΓ′′′′′′G ;DG
]

In the paper, the number of the iteration stepsm0 in the multi-grid operator of the depthl = 0

depends on the number of the multi-grid iteration stepn: m0 = m0(n). We definem0(n) in such a

way that afterm0(n) iteration steps, a residue decays by the factorKn:

Kn||Φm0(n)[ΓΓΓG
n ;DG ]−Φm0(n)+1[ΓΓΓG

n ;DG ]||< ||ΓΓΓG
n −Φ[ΓΓΓG

n ;DG ]|| (28)

We call the valueKn the decay factor.

Constant decay factor may lead to a non-smooth decay of residue from one multi-grid iteration

step to another which in turn leads to increasing of the number of the idle coarse-grid iteration

steps (see Figure 2, solid line). To achieve a smoother decayof the error, in our paper we change
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Figure 2: Coarse-grid residue decays with the number of the iteration steps in the multi-grid
method. Two cases are shown: constant decay factorKn = 10 (solid line), and variable decay factor
Kn (dashed line). System: argon aqueous solution, spacing 0.1Å , buffer 6.4Å Peaks on the saw-
shaped line (Kn=const) correspond to the boundaries of multi-grid iteration steps. The coarse-grid
correction is re-calculated when iteration returns from the coarse grid to the fine grid. Saw-shaped
line means that iteration steps on a coarse grid are performed even after the desired accuracy of
the coarse-grid correction calculation has been achieved.Thus, a significant number of coarse-grid
iteration steps are actually idle because they do not improve the final result. Introducing a variable
decay factor allows one to adjust the accuracy of the coarse-grid calculations and to avoid the idle
iteration steps.
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Kn by the following recursive formula:

Kn+1 =











max( 1
α Kn,Kmin) if ||ΓΓΓG

n,m0
−Φ[ΓΓΓG

n,m0
;DG ]||< ||ΓΓΓG

n+1−Φ[ΓΓΓG
n+1;DG ]||

min(βKn,Kmax) otherwise
(29)

whereΓΓΓG
n,m0

= (ΦG )
m0(n)[ΓΓΓG

n ;DG ], α = 2, β = 1.2. For the MG-Picard method we useK0 = 10,

Kmin = 5, Kmax= 100, for the MG-MDIIS method we useK0 = 100,Kmin = 10,Kmax= 100. This

allows us to smooth the decay of error and to reduce the total number of the iteration steps (see

Figure 2, dashed line).

Usually iterative algorithms stop when the norm of the residue is less than some threshold.

However, this method has its own disadvantages. The first oneis that a small residue between two

iteration steps does not necessarily imply a small distancefrom the current approximation to the

exact solution. The second one is that a threshold is typically given in dimensionless values which

have no physical meaning and thus one has no guidelines to chose an appropriate threshold. In the

current work we use another criteria to stop iteration steps. Multi-grid iteration stops on the n-th

iteration step if the following condition is satisfied:

||ΓΓΓn−ΓΓΓn+m||< εtres (30)

where m is such, that

||ΓΓΓG
n+m−ΓΓΓG

n+m+1||< 0.01||ΓΓΓG
n −ΓΓΓG

n+1|| (31)

We use such a condition because usuallyΓΓΓG
n+m is a good approximation of the exact solution. In

the paper we use a norm based on the Solvation Free Energy calculations:

||ΓΓΓG
1 −ΓΓΓG

2 ||= |∆GKH(ΓΓΓ1)−∆GKH(ΓΓΓ2)| (32)
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The solvation free energy is calculated in the 3DRISM-KH approximation:54

∆GKH(ΓΓΓG ) = ρkBT
Nsolvent

∑
α

∫

R3
θ(−hα(r))hα(r)−

1
2

cα(r)hα(r)−cα(r)dr (33)

whereθ(·) is the Heaviside step function. Because of such definition ourthreshold has well-

defined physical meaning and is measured in energy units. In our work we useεtres=0.001 kcal/mol.

To make the calculations faster, in addition to the multi-grid technique we use several grids

with the same spacing but different buffers. We introduce a grid-enlargement operatore[·] which

enlarges the buffer of a grid. We introduce an operatorE[·] which extrapolates a solutionΓΓΓG to a

grid e[G ].

E[ΓΓΓG ] = ΓΓΓe[G ] (34)

Because functionsγα(r) tend to zero when|r | → ∞, operatorE[·] extrapolates functions by adding

zeros at those parts of the gride[G ] which do not belong to the gridG . The scheme of the iteration

can be written in the following way:

ΓΓΓG
0

solve 3DRISM eqs.−−−−−−−−−−→ ΓΓΓG
∗

E[·]−−→ ΓΓΓe[G ]
0

solve 3DRISM eqs.−−−−−−−−−−→ ΓΓΓe[G ]
∗

E[·]−−→ . . . (35)

We start from a zero approximationΓΓΓG
0 on the gridG with a small buffer and using the scheme

Eq. (35) after several steps we obtain a solution on a grid with a large buffer.

Computation details

We performed 3DRISM calculations for infinitely diluted aqueous solutions of argon, methane,

methanol and dimethyl ether (DME). For the partial charges and Lennard-Jones (LJ) parameters of

the solute molecules we used the OPLS-AA force-field parameters.55 We used the MSPC-E water

model49 to describe solvent. In the 3DRISM calculations we used totalsite-site correlation func-

tions of water which were initially calculated by the dielectrically consistent RISM technique.49

Pairwiseσ Lennard-Jones parameters were calculated as an arithmeticmean of atomic parameters,
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pairwiseε Lennard-Jones parameters were calculated as a geometric mean of atomic parameters:

σ12 =
σ1+σ2

2
; ε12 =

√
ε1 · ε2 (36)

Calculations were performed on the Intel(R) Xeon(R) CPU X5650 with the clocking 2.67GHz.

For calculation of the direct and inverse fast Fourier transforms the FFTW3 library was used.56

Results

Finding the optimal parameters for the multi-grid solver

We performed 3DRISM calculations for infinitely diluted aqueous solutions of four compounds:

argon, methane, methanol and DME. To determine the optimal grid parameters we performed

solvation free energy (SFE) calculations on grids with different spacing parameters and different

buffers. In Figure 3 the dependence of calculation errors onthe spacing parameter is shown. For

the calculations we used several different grids with the fixed buffer of 8Å and different spacings

which vary from 0.1Å to 2Å . Errors were calculated as absolute values of the differences between

SFEs calculated on a current grid and SFEs calculated on the very fine grid with the spacing of

0.05Å and the buffer of 8Å . The results show that the the grid with the spacing of 0.2Å provides

an error that is less than 0.1 kcal/mol for all solutes which is acceptable for the most of chemical

applications. Thus in our work we use the grid with spacing of0.2Å .

In Figure 4 we show the dependency of calculation errors on the grid buffer. The calculations

were performed on grids with fixed spacing of 0.2Å and different buffers varying from 8Å to 20Å .

Errors were calculated as differences between the SFEs calculated on the current grid and the SFEs

calculated on the very fine grid with spacing of 0.2Å and buffer of 30Å . The figure shows that the

grid with the buffer of 15Å is enough to provide the accuracy of SFE calculations6 0.1kcal/mol.
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Figure 3: Dependency of the calculation errors on grid spacing at constant buffer (8Å )
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Figure 4: Dependency of calculation errors on the grid buffer with constant spacing of the grid
(0.2Å ).

Computational benchmarks of different 3DRISM solvers

To check the numerical performance of the proposed multi-grid algorithm we performed 3DRISM

calculations for infinitely diluted aqueous solutions of argon, methane, methanol and DME using

the Picard iteration, the MDIIS, the MG-Picard and the MG-MDIIS methods. For the Picard and

the MDIIS methods the grid with spacing of 0.2Å and buffer of 15Å was used. For the multi-grid

methods (MG-Picard, MG-DIIS) we used the scheme Eq. (35) with two enlargements: we started

from the grid with the buffer of 7.65Å , then moved to the grid with the buffer of 10.71Å and

finished iteration on the grid with the buffer of 15Å . Solutions on the girds with smaller buffers
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were used as initial guesses for the grids with larger buffers. For each buffer we used the multi-grid

algorithm which uses 3 different grids (depthl = 2). All calculations were performed on the same

personal computer, Intel(R) Xeon(R) CPU X5650 with clocking 2.67GHz.

Table 1: Computation expenses of 3DRISM calculations with thePicard iteration, MDIIS, MG-
Picard and MG-MDIIS methods.

Compound Picard iteration MDIIS MG-Picard MG-DIIS
argon 1148 sec 167 sec 46 sec 50 sec

methane 1484 sec 154 sec 149 sec 82 sec
methanol 1857 sec 416 sec 165 sec 83 sec

dimethyl ether 4462 sec 509 sec 241 sec 133 sec

Computational expenses on solving 3DRISM equations for each of the investigated four meth-

ods are presented in Table 1. These results show that the Picard iteration is the least efficient

method, while the most efficient is the MG-MDIIS method. We note that the multi-grid methods

in all investigated cases are more efficient than the one-grid methods.
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Figure 5: Speed up of the calculations by using the MDIIS, theMG-Picard and the MG-MDIIS
methods as compared to the Picard iteration method.

Figure 5 compares computational performance of the MDIIS, the MG-Picard and the MG-

MDIIS with the Picard iteration method. The figure shows thatfor all four compounds multi-grid

methods give more than 10 times speedup while for three of these four compounds the MG-MDIIS

method is more than 20 times faster than the Picard iterationmethod. Average speedup factors with

respect to the plain Picard method for the MDIIS, the MG-Picard and the MG-MDIIS methods are
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correspondingly 7.4, 16.2 and 24.2. The most effective is the MG-MDIIS method that is in average

about 3.5 faster than the MDIIS method. Difference between the multi-grid methods is not very

large: the MG-MDIIS method is in average only 1.5 times faster than the MG-Picard method. The

results show that the multi-grid scheme can be effectively used in combination with different types

of coarse-grid iteration methods for solving the 3DRISM equations for aqueous solutions of small

non-charged molecules.

Computational benchmarks on a large set of organic molecules

The main goal of this part of our study was to investigate the overall efficiency of the new method

in a view of large-scale practical applications like, e.g. physical-chemical profiling of large sets of

organic compounds. We performed an additional benchmark and tested the efficiency of the new

algorithm on a set of organic molecules as well as the accuracy of the SFE prediction. We esti-

mate average computational expanses for the 3DRISM calculations also check whether numerical

accuracy of the calculations is enough for accurate estimation of SFE.

We have chosen a set of 99 organic molecules. This set of molecules is a part of the set used

in Ref. 21. The set includes alkanes, ketones, alkyl-benzenes, alcohols, alkyl-phenols, ethers and

other (polyfunctional) molecules. Quantity of atoms in molecules of the set varies from 5 to 31.

Average number of atoms in a molecule is 16. The full list of molecules in the set is provided in

the supporting information. The Antechamber tool57 from the Amber Tools 1.4 Package58 was

used for molecular structure optimization and assigning Force-Field parameters. Structures of the

molecules were optimized by using the AM1 method.59 Atomic partial charges were calculated by

using the bond charge correction(BCC) method.60,61LJ parameters from the General Amber Force

Field (GAFF)62 were assigned to the solutes. The benchmark calculations for simple molecules

reported above show that the most effective is a combinationof the multi-grid and MDIIS(MG-

MDIIS) methods. Therefore, we use the MG-MDIIS algorithm inour benchmarking of the overall

efficiency of the method.

Figure 6 shows dependency of the computational time spent onMG-MDIIS 3D-RISM calcula-
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Figure 6: Dependency of the computational time spent on MG-MDIIS calculations on the
molecule number of atoms for 99 organic molecules from the chosen molecule set.

tions on the number of atoms in a molecule. The plot shows thatthe computational time can essen-

tially vary for different molecules even if the molecules have the same number of atoms. However,

this somehow counterintuitive result has a straightforward explanation. Indeed, convergence of

the algorithm depends not only on the number of atoms but alsoon the chemical composition

of a molecule and its structure, particularly on the distribution of atomic partial charges and the

molecule surface accessible area. This is illustrated by the results shown in Figure 3 and Figure 4

that show different error dependencies for polar and non-polar molecules. Also, even if two dif-

ferent molecules have the same number of atoms, they may still have rather different shapes. This

can result in different grid sizes for them. More compact molecules need smaller grids than the

less compact molecules, even if they have the same buffer andthe same number of atoms. There-

fore, combination of these two factors causes this significant deviation of computational time for

molecules of the same number of atoms. However, the computational time for any molecule in the

set is still less than 6 minutes. Average computational timeis some 3.5 minutes (3 min 27 sec).

We used the 3D RISM correlation functions calculated by MG-MDIIS method as an input for

SFE calculations for all molecules from the above mentionedset of 99 organic compounds. We

used 25 molecules as a training set and the rest of the set (74 molecules) as a test set. The lists of all

compounds in the training and test sets are given in the supporting information. For accurate SFE

calculations we used the Universal Correction (UC) method that was introduced in recent papers
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Ref. 20,21. We tested two modifications of the UC method. The first one (UC-KH method) is

based on the Kovalenko-Hirata (KH) Free Energy functional Eq. (33). The second one (UC-GF

method) is based on the Free Energy calculations using the Gaussian Fluctuations (GF) formula:63

∆GGF = ρkBT
Nsite

∑
α=1

∫

R3
(−1

2
hα(r)cα(r)−cα(r))dr (37)

wherekB is the Boltzmann constant,T is the temperature,ρ is the number density of a bulk solvent.

In the UC-GF method (∆GGF
UC) and in the UC-KH method (∆GKH

UC) SFE is calculated by using the

following relations:

∆GGF
UC = ∆GGF +aGFρV +bGF (38)

∆GKH
UC = ∆GKH +aKHρV +bKH (39)

whereV is the partial molar volume of the molecule,aGF, bGF, aKH , bKH are calculated by using

the linear regression method to fit experimental data. Partial molar volume of a molecule was

calculated by the following formula:64,65

V =





1
ρ
+4π

∞
∫

0

(goo(r)−1)r2dr





(

1−ρ
Nsite

∑
α=1

∫

R3
cα(r)dr

)

(40)

wheregoo(r) is the oxygen-oxygen RDF of bulk water.

Using the training set of compounds, the following values ofcoefficients were obtained by the

linear regression fitting procedure11,21 : aGF=-2.23 kcal/molbGF=1.28 kcal/mol for the UC-GF

method andaKH = -3.51 kcal/mol,bKH = 0.81 kcal/mol for the UC-KH. Figure 7(a) and Fig-

ure 7(b) shows the correlation between the experimental values∆Gexp and the calculated values

∆GGF
UC and∆GKH

UC . The correlation coefficient is 0.97 for the both methods. Root mean square

deviation (RMSD) on a test set is 0.96 kcal/mol for the UC-GF method and 0.84 kcal/mol for the

UC-KH method. Accuracy of predictions is comparable with accuracies of experimental meth-

ods12,66 and corresponds to accuracies of current state-of-the-artmethods for SFE calculations

by molecular dynamics67–70 and other advanced molecular theories (e.g. energy representation
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(a) Universal Correction based on the GF expres-
sion: ∆GGF

UC = ∆GGF + aGFρV + bGF, whereaGF =
−2.23 kcal/mol, bGF = 1.28 kcal/mol

(b) Universal Correction based on the KH expres-
sion: ∆GKH

UC = ∆GKH +aKHρV +bKH , whereaKH =
−3.51 kcal/mol, bKH = 0.81 kcal/mol

Figure 7: Correlation of experimentally measured SFEs with the SFEs values calculated by the
Universal Correction method for the investigated set of organic molecules.

method by Matubayasi and Nakahara71–73).9,74 Thus we show that the numerical accuracy of the

algorithm is enough for SFE calculations and parameterization of calculation results.

Conclusions

In the paper we proposed a new multi-grid based method which solves the 3DRISM equations. To

determine the optimal grid parameters we performed 3DRISM calculations for infinitely diluted

aqueous solutions of argon, methane, methanol and dimethylether. We showed that on the grid

with the spacing of 0.2Å and the buffer of 15Å the maximal error is less than 0.1 kcal/mol. We

tested two modifications of the multi-grid algorithm: MG-Picard and MG-MDIIS methods. We

compared the numerical efficiency of the multi-grid algorithms with the the numerical efficiency

of the standard Picard iteration method and the MDIIS method. We showed that the MG-MDIIS

algorithm is more than 24 times faster than the Picard iteration method and more than 3.5 times

faster than the MDIIS method.

In turn, efficiencies of the MG-DIIS and MG-Picard methods donot differ very much. The

MG-DIIS method is about 1.5 times faster than the MG-Picard method. We suggest that the most
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effective MG-MDIIS method can be used in the future as a fast tool for calculations of Solvation

Free Energy for organic molecules. To support this statement we performed 3DRISM calculations

for aqueous solutions of 99 organic compounds. For all compounds in the set the computational

time does not exceed 6 minutes per one molecule while the average computational time is only 3.5

minutes per one molecule on a standard personal computer. Wecalculated solvation free energies

by using GF and KH expressions with the universal partial molar volume corrections (UC-GF and

UC-KH methods). We showed that calculated and experimental values of solvation free energy

are strongly correlated to each other (correlation coefficient is 0.97). RMSD error for the test set

of compounds is less than 1 kcal/mol for both UC-GF and UC-KH methods. The performed tests

show that the proposed algorithm can be used for fast and accurate predictions of aqueous solvation

free energies of neutral molecules.
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