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Abstract

In the paper we present a fast and accurate method for modeling solpatiperties of
organic molecules in water with main focus on predicting solvation (hydratiee)dnergies
of small organic compounds. The method is based on a combination of (i) autzsldteory,
three-dimensional Reference Interaction Sites Model (3DRISM); Gbrfaulti-grid algorithm
for solving the high-dimensional 3DRISM integral equations; (iii) recenttyoiuced uni-
versal correction (UC) for the 3DRISM solvation free energies byerly scaled molecular
partial volume (3DRISM-UC, Palmer et al., J. Phys.: Condens. Matter@2,04, (2010) ). A
fast multi-grid algorithm is the core of the method because it helps to redutdégtheompu-
tational costs associated with solving the 3DRISM equations. To facilitateefapplications

of the method we performed benchmarking of the algorithm on a set ofadewedel solutes
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in order to find optimal grid parameters and to test the performance anchagaf the algo-
rithm. We have shown that the proposed new multi-grid algorithm is in averagmas faster
than the simple Picard method and at least 3.5 times faster than the MDIIS methabdisvh
currently actively used by the 3DRISM community (e.g. the MDIIS method kas becently
implemented in a new 3DRISM implicit solvent routine in the recent release of thieef
Tools 1.4 molecular modeling package (Luchko et al. J. Chem. Theor. Gqrp607-624
(2010)). Then we have benchmarked the multi-grid algorithm with chosemalparameters
on a set of 99 organic compounds. We show that average computationaétjmesd for one
3DRISM calculation is 3.5 minutes per a small organic molecule (10-20 atoms$tamdard
personal computer. We also benchmarked predicted solvation fregyersdues for all of the
compounds in the set against the corresponding experimental data. oWethsdt by using
the proposed multi-grid algorithm and the 3DRISM-UC model it is possible toimizod
correlation between calculated and experimental results for solvatiorriergies of aqueous
solutions of small organic compounds (correlation coefficient 0.97 meatn square deviation

<1 kcal/mol).

Introduction

Integral equation theory of liquids (IETL) is a useful medhior theoretical studies of structural
and thermodynamical properties of liquids. IETL descritiesliquid structure in terms of cor-
relation functions. The central equation in IETL is the Qeis-Zernike (OZ) equatiof.In its
general molecular form this equation operates with sixatigional correlation functions even in
the case of isotropic molecular systemBecause of the high computational complexity, an effi-
cient numerical solution of the high-dimensional molec@& equation is still an open problem.
Therefore, there have been developed some approximatelsrtbde help to reduce dimension-
ality of integral equations. Most popular model in this fiegddthe Reference Interaction Site
Model (RISM)2 One of the man approximations behind the original RISM masitiat the high-

dimensional molecular correlation functions are represgmy a set of spherically symmetric



site-site functions. That approximation reduces the paghigh-dimensional problem to a set of
(technically) one-dimensional equations. Due to this,fde RISM theory is also referenced as
1DRISM.

From a computational point of view it is relatively inexpesmsto solve the 1DRISM equations
numerically for small molecular solutes (<18toms) with modern computers; and, typically, so-
lutions of the 1DRISM equations give a qualitatively corrdescription of the solvent structure
around solute. To compare, it was shown that RISM solvenesgmtation is more accurate than
continuum solvent representation in continuum electtiwstanodels*~° In addition, RISM theory
gives end-point expressions for solvation free energy [Sk#& avoid thermodynamical integra-
tion.”8 We note though that the original formulae for SFE calcutaid provide only qualitative
predictions of trends in the differences of SFEs for differeompounds. Recently there were
proposed several methods for parameterizing RISM solvétteanenergy (SFE) calculations that
predict SFEs with an accuracy around 1 kcal/f#idf However, decomposition of molecular func-
tions to site-site spherically symmetric functions leamlsntaccurate representation of molecular
structure. Therefore, a considerable number of empirigakctions is necessary to achieve good
accuracy of predictions.

Another approximation of the Ornstein-Zernike equationthis so-called three-dimensional
RISM (3DRISM)*15where a solute molecule is represented as a three dimehsigjeat. The
3DRISM operates with a set of three-dimensional equatiodstiaat model provides better spa-
tial description of solute-solvent correlations than tBE&RISM. The 3DRISM method is currently
widely used in biochemical applications for the descriptidsolvation properties of biomoleculé%:1?
Another promising application of the 3DRISM theory is congiignal screening of large databases
of drug candidates. As it was recently shown, a 3DRISM-basetthod accurately predicts ther-
modynamic parameters of hydrated organic molecules iimaudrug-like moleculeg?2! How-
ever, for small molecules, numerical solution of the mintiensional 3DRISM equations requires
significantly more computational time than solution of tH2RISM equations’! High compu-

tational expenses of 3DRISM calculations is a real bottleraddhis method that inhibits wider



applications of this technique. In the current work we shbat this problem can be overcomed
by using of highly efficient multi-grid algorithms.

Coming back to the history of the IETL, the first algorithm u$edsolving OZ-like integral
equations was presumably the Picard iteration me#dthis method is easy to implement. How-
ever, it has comparably low convergence rate. Therefoegetivere proposed several alternative
iteration schemes in order to improve the convergence tetie a&s the Newton-Raphson method
(NR),23 the NR-GMRES (Generalized minimal residual method) algotj& the combined NR-
DIIS(direct inversion in iterative subspace) iteratforthe Modified DIIS (MDIIS) method® and
the vector extrapolation methdd.Recently an efficient 3DRISM equations solver which uses the
MDIIS algorithm was implemented in the Amber molecular modgsoftware!®

Another way to increase the speed of calculations is to usestale and multi-scale meth-
ods?28-34However, from a mathematical point of view it is necessaryge all advantages of the
multi-scale approach. From the applied mathematics petispethere is a general 'multi-grid’
(MG) technique that is well investigated theoretically dirid rigorously proven to be effectivé®
These days the multi-grid technique is widely used in sé\sneas of computational chemistry
(particularly in quantum chemistry and material sciené€sj° In spite of that, only recently the
multi-grid methods attracted attention of the RISM commuf#t“2In our recent work we have
shown, that the multi-grid technique allows one to increthge performance of the numerical
1DRISM solver up to dozen time®. One of the main goals of the current work is to develop a
fast algorithm for solving the 3DRISM equations, becausddtier have been proven to be more
advanced from a theoretical point of vieik 4347

We note that general theoretical framework of the multdgnethod for solving RISM equa-
tions proposed in Ref. 42 allows one to combine this methadd ettier different numerical solvers.
In our work we investigate the numerical performance of twodifications of the multi-grid
3DRISM algorithm where the multi-grid is combined with (i)etPicard iteration method (MG-
Picard); and (ii) with the MDIIS method (MG-MDIIS) respeatly. By benchmarking of these

methods on a set of model compounds we determine the optintapgrameters for solvation



(hydration) free energy calculations. We test the numepedgormance of the proposed methods
and compare it to the performance of the standard Picaatidermethod and the MDIIS method.
Additionally, we benchmark the speed and accuracy of therdéilgn on an extended set of 99
organic compounds. Firstly, we test computational peréoroe of the algorithm. Then we test the
accuracy of the SFE calculations with the Universal Coroectnodel (UC) as proposed in Ref.
10. To check the accuracy of the free energy results we edfetihe correlation coefficient and

root mean square deviation between calculated and expsahuata.

Method

3D RISM

In our work we use the Kovalenko-Hirata formulation of the BISM theory**48in order to de-
scribe infinitely diluted solutions of small organic solmtelecules. Solvent (water) molecules are
described by the 1DRISM approximation, while a solute mdecaia three-dimensional object.
Structure of the solvent is described by the total and doegelation function$iy (r), cq (r) where

a indicates a solvent site. The 3DRISM equations are writteherfollowing way:

Nsolvent
()= 3 S Xealr ) ®
whereNsolventis the number of solvent sitegg, (r) is the solvent susceptibility function for sites

¢ anda. Solvent susceptibility functiong;, (r) are defined as following:

Xea(r) = 0eq(r) +ph3R(r), (2)

wherer = [r|, Wro (1) = Ogq + (1 — 954 )O(r — rga)/(4nr§a), r¢q is the distance between the sites
¢ anda of a solvent moleculdﬁ%{"’(r) IS the total site-site correlation function of the solveiteés
¢ anda, O is the Kronecker delta andi(r) is the Dirac delta function. In this paper we used the

functionshfz%"’(r) calculated in Ref. 49.



Eqg. (1) is completed by closure relations:

ha(r) — e—BUa((r))+ha(r)_ca(r)+Ba(r) -1, (3)

where3 = 1/kgT, kg is the Boltzmann constant, is the temperaturd),(r) is the interaction
potential corresponding to a solute siteBy (1) is the bridge functional.

To use iterative solvers we rewrite Eq. (1) in the followirgrfi:>°

Nsolvent

()= > [ W =1))Xea r)dr + 8a(r) ~ € lya(r)] @
=1

whereyy (1) = hg(r) —c3(r), c5(r) = cq(r) + BUL(r), Ug(r) =UZ(r) +UL(r), US(r) is a short
range potentialJ}(r) is a long range potentiaBy (r) = —3 Se Jrs UEL(r — 1) Xeq(r')dr!, €[] is

a closure (bridge) functional.

We use interaction potentials which are superpositione@ktte-site interaction potentials:

Nsolute

U =S uS(r—rd); (5)
s=1
Nsolvent

Uk =3 us(lr —rdl); (6)
s=1

wherers is the position of a solute sitewith respect to the center of a moleculyg e is the
number of solute sites. In our work the site-site potentalstain Lennard-Jones and Coulomb

part. Pair Lennard-Jones parameters are obtained fromtén@calJ parameters by using the

Lorentz-Berthelot mixing rules:

1
Osq = E(O's‘f‘ Oa) E&sa = V/ EsEa (7)

To avoid divergence of the algorithm due to the long rangebiein of the interaction potentials we

separate the short range and the long range of the potethi#le/e then treat separately by using



the Ng procedur&! We use the atomic units for distance and energy Bols2®18 101°m and
Hartree=435974394 10'8 J. This allows us to avoid scaling coefficients in the repnesteon of

the Coulomb potential. Thus expressions for the short-rangdong-range potentials are written

as following:
uS, (1) = us ™" (r) + uS, (r) (1 — erf(tr)) ®)
Uy (1) = uga "9 (r) ++ U, (rerf(tr) ©)

where u$, (r) is the Coulomb component of the site-site potential(rgre [*_ et’dt, 1=0.5

Bohr2, usy®M™ (1), u521°"9 (1) are short-range and long-range components of the LenmnaesJ

potential respectively. The latter are defined by the folhgarelations:

0 otherwise
usa "0 (1) = ug(n) - ugg ™" (1) (12)

whereul (r) is a Lennard-Jones component of a site-site potemRigi=8A .

In the article we use the Kovalenko-Hirata (KH) closure, ethis defined as following?

e BUTN+%() _ v (r)—1 when — BUS(r) + yu(r) > 0
Elya(r)] = Ya (1) BUZ(r) + Ya(r) (12)
—BUS(r) otherwise

In the numerical representation of Eq. (4) the functigp§ ), Xs4(r), 84(r) are defined by
their values in the grid points of an uniform Cartesian gridgrid is defined by two parameters:
spacingandbuffer. Spacings the smallest distance between the grid pointstaritéris the min-
imal distance from the solute atoms to the boundaries of tite(gee Figure 1 for explanations).
At first glance, such parameterization may seem to be incoernefrom a theoretical point of
view because the same buffer and spacing parameters mayifiment grids for different so-

lutes. However, our work is mostly oriented towards futuracgical applications of the method



and in practical applications we are interested in the amyuof calculations for different cutoff
distances of the correlation functions; and these cutstiadices for a Cartesian grid are defined
by the buffer parameter. Using the same buffer parameterawedjust the size and the shape of
the grid preserving a constant cutoff of the solvent coti@iefunctions for different solutes. That

provides us a straightforward way to control the accuraayatdulations.

buffer

spacing

Figure 1: Spacings the minimal distance between the grid poirstferis the minimal distance
from the solute atoms to the boundaries of the grid

We denote the forward and the inverse Fourier transformshergtid¥ as.Zy||, 54*{;1[-]

correspondingly. Then a discrete analogue of Eq. (4) resds a
=7, X7y ¢ [r7]]] +07 -2 1] (13)

T T
v o9 NG

where rg - (Y(f, T Yﬁsolven) ! eg - <e§f’ Y eﬁsolvent> ! X7 = [XEG]NSOWEWX Nsolvent’ Xfa =

F4[Xzql, Upper indexy means that functions are given by their values in the grigisaf the

grid¥.



Eg. (13) can be written in a more compact way:
r =r[r] (14)

whereF ] = 7,1 [x% [% [rgm 107 —¢ [rﬂ

The Picard iteration method is defined by the following reent formula:
M= (1A +AF[r7] (15)
Whererf is the n-th step approximation,is the coupling parameter.

DIIS and MDIIS iteration

Direct inverse in the iterative subspace (DIIS) method istaration method initially introduced
to improve convergence of Schrédinger equation solvétsater modified DIIS (MDIIS) method
was applied to the 3DRISM equatiof%In the DIIS method on the n-th iteration step one finds
an approximate solutioR? which is a linear combination of the approximations onkipeevious

iteration steps:
k
ry- 3G ki (16)
i=

Below we describe the DIIS and MDIIS algorithms which solve 8DRISM equations in the
form (EqQ. (14)). We also plan to use the MDIIS algorithm in ooulti-grid scheme. This will

require to consider a generalized task in the following form
rY=r[r’)+p? (17)

.
whereD? = (d{f, ' > is an arbitrary vector of corrections. The vector of coriees will

* 2 ¥ Nsolvent

be calculated during the multi-grid algorithm when we monanf one grid to another one. This

procedure is described in the next section of the paper.erurent section we describe one-grid



solvers where vectd? is given. Below we describe the DIIS and MDIIS algorithms fgemeral
case of an arbitrary vect@ having in mind that the 3DRISM equations (Eq. (14)) corresbimn
the casé? = 0.

In the DIIS method the coefficient§ in Eq. (16) are chosen to minimize the norm of the
residueA? =Y —F[IY] —DY. If one assumes linearity of the operatr(which for smooth

operators is locally true) then the task reduces to thewidtig system of linear equatior?s:

a1 ... -1 Cl 0
-1 :

= (18)
a1 ... ae —1 Ck 0
1 ... 1 0 A 1

<@

whereajj = [paAi()Aj(r)dr, Ai(r) =TY i —F[F7_ ;] —D?. In the DIIS method ¥ is used
as a solution approximation on the (n+1)-st iteration stepwever, such a procedure can lead
to a linearly dependent system of equations. The MDIIS tilgnamethod avoids this problem by

adding a weighted residue to the (n+1)-st step approximzfio
r =r?+n (FIrY)+p?-r?) (19)

wheren is a weight for the residue. In combination with the stand@adping technique the
solution approximation on the (n+1)-st stéiil in the MDIIS method can be found by using the

following formula:
M= @-0rf +Ar?+an (FIrY)+p? -r?) (20)

In our work we usel = 0.5, n = 0.3. These values are sub-optimal and allow to ensure stabilit
of the algorithm and in the same time retain reasonable pedoce. Detailed description of the

dependence of the computation timelandn parameters is given in the supporting information
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to the paper.

To make notations shorter we introduce the MDIIS operafar|:

*

z[r;f,D%]:(l—A)r;ﬁAern(F[r(f]w‘f—rf) (1)

Multi-grid

We use the multi-grid technique in order to decrease the atetipn time spent on solving the
3DRISM equations. General description of the multi-gricotyecan be found in the book Here
we give only short description of the multi-grid method aeglto the 3DRISM equations. More
information on the theoretical background of the methodlmafound in our recent paper where a
similar computational framework for an efficient algorittion solving the 1D-RISM equations is
described*?

In the multi-grid method the numerical task is discretizadseveral grids with the same buffer
but different spacings. Grids with smaller numbers of poamd larger spacings are calleahrse
grids, grids with larger number of the points and smallecspgs are callefinegrids. In our work
we consider grids where number of points differ by the faofd", wheren=0,1,2, ....

We introduce operatong|-], r[-], which convert a coarse grid to a finer one and vice versa. We

introduce an operatd®[-| which map a fine-grid function to a coarse grid.
R =l (22)
Also we introduce an operat® -] which interpolates a coarse-grid function to a fine grid:
PIr“=r{ (23)

In the paper we use the linear interpolation operator.

11



To make notations simpler we introduce an operator-:
AFg:D7] = (1= 42 (Ry[F*]+D7). (24)

A multi-grid iterative algorithm which solves the task Eq7§ can be written in the following
form:

M=y |F7:D7). (25)

where I'f is the n-th step approximation%/é[ﬂ is a multi-grid operator which performs one
multi-grid iteration step of the depthon the grid¥. To calculate the multi-grid operator of the
depthl = 0 one performsng one-grid iteration steps on the gt#l The multi-grid technique can
be applied to both: the Picard and the MDIIS iteration methole define a generalized operator
®[-;-] in the following way:

A[F?:D%] for MG-Picard method

®[ry;p?] = (26)
=[r?;DY] for MG-MDIIS method

Then the multi-grid operator of the degtk= O is defined as:
43 |r7;D7| = o™ ;07| (27)

Forl > 0, given the n-th step approximatitﬁrf and the correction vectd®?, the multi-grid
operator///'g[-; -] is calculated by the following algorithm:
Input parameters: 7, DY, |

Result 'Y, = .#,[r¢; D7)

1. Performv; Picard iteration steps on the fine grid (in our work= 5):

r —nu[rfp”|

12



2. Move to the coarse grid¥]:

4. Perform recursively multi-grid iteration steps of depth- 1 on the coarse-grid (in our work
u=1):
) -1\H [~19]. pine r%]
M = () o) RID7]+E]

5. Correct the fine-grid solution using the coarse-grid tesul

- (9] 1l
e _r +P[r(u) r(o)}

6. Performv, Picard iteration steps on the fine grid (in our wagk= 0):

I-.(anrl — A2 [I-Il%; D{?i|

In the paper, the number of the iteration stepsin the multi-grid operator of the depth= 0
depends on the number of the multi-grid iteration stepypy = mp(n). We definemp(n) in such a

way that aftemmy(n) iteration steps, a residue decays by the faktpr
Kn|[@™ MM D] — ™MW D)) < ||FY — o[ D7) (28)

We call the valu&,, the decay factar
Constant decay factor may lead to a non-smooth decay of eegioitn one multi-grid iteration
step to another which in turn leads to increasing of the nurobéhe idle coarse-grid iteration

steps (see Figure 2, solid line). To achieve a smoother dafddwe error, in our paper we change

13
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Figure 2: Coarse-grid residue decays with the number of #ration steps in the multi-grid
method. Two cases are shown: constant decay f&gter10 (solid line), and variable decay factor
Kn (dashed line). System: argon aqueous solution, spaciiy,biiffer 6.4A Peaks on the saw-
shaped lineK,=const) correspond to the boundaries of multi-grid iterasteps. The coarse-grid
correction is re-calculated when iteration returns from¢barse grid to the fine grid. Saw-shaped
line means that iteration steps on a coarse grid are pertbaven after the desired accuracy of
the coarse-grid correction calculation has been achieMadls, a significant number of coarse-grid
iteration steps are actually idle because they do not ingptio® final result. Introducing a variable
decay factor allows one to adjust the accuracy of the cagmgezalculations and to avoid the idle

iteration steps.
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Kn by the following recursive formula:

max(%Knmein) if ||rgn¢m) —(D[rﬁnrb’D(g]H < ||rn+1 q3[rn+1; ]”
Kny1= (29)

min(BKn,Kmax) otherwise

wherel ] = (®y)™M[FY;DY], a = 2, B = 1.2. For the MG-Picard method we ukg = 10,
Kmin = 5, Kmax= 100, for the MG-MDIIS method we ud& = 100,Kpin = 10, Kmax= 100. This
allows us to smooth the decay of error and to reduce the tataber of the iteration steps (see
Figure 2, dashed line).

Usually iterative algorithms stop when the norm of the resids less than some threshold.
However, this method has its own disadvantages. The firsisahat a small residue between two
iteration steps does not necessarily imply a small distéroee the current approximation to the
exact solution. The second one is that a threshold is typigalen in dimensionless values which
have no physical meaning and thus one has no guidelines s @mappropriate threshold. In the
current work we use another criteria to stop iteration stéglti-grid iteration stops on the n-th

iteration step if the following condition is satisfied:
IFn—Fnim|| < &tres (30)

where m is such, that

Hl'fnﬁm n+m+1H <0. OlHI'g rn+1” (31)

We use such a condition because usuﬁif¥m is a good approximation of the exact solution. In

the paper we use a norm based on the Solvation Free Energyatalns:

IFY —T5|| = |AGkn (F1) — AGkH (o) (32)

15



The solvation free energy is calculated in the 3DRISM-KH appnation®*
@ Nsolvent 1
AGk(FY) = pkaT Y [ 8(~ha(r)ha(r) = 5ea(Pha() —ca(n)dr  (33)
a

where 0(-) is the Heaviside step function. Because of such definitiontlotgshold has well-
defined physical meaning and is measured in energy unitsiribwvark we useye=0.001 kcal/mol.
To make the calculations faster, in addition to the mulittdechnique we use several grids
with the same spacing but different buffers. We introduceid-gnlargement operat@-] which
enlarges the buffer of a grid. We introduce an oper&terwhich extrapolates a solutidi’ to a
grid e|¥].
E[rY) =rel (34)

Because functiong, (r) tend to zero wheir| — o, operatorE|-] extrapolates functions by adding
zeros at those parts of the gef¥| which do not belong to the gri@. The scheme of the iteration

can be written in the following way:

solve 3DRISM egs. E[] [¢] solve 3DRISM egs. re[gg] E[]
%

r%

ry o > (35)
We start from a zero approximatidf on the grid% with a small buffer and using the scheme

Eqg. (35) after several steps we obtain a solution on a grid svlarge buffer.

Computation details

We performed 3DRISM calculations for infinitely diluted ague solutions of argon, methane,
methanol and dimethyl ether (DME). For the partial chargeslaennard-Jones (LJ) parameters of
the solute molecules we used the OPLS-AA force-field pararsg? We used the MSPC-E water
model*® to describe solvent. In the 3DRISM calculations we used Sitalsite correlation func-
tions of water which were initially calculated by the digtézally consistent RISM techniqu.

Pairwiseo Lennard-Jones parameters were calculated as an arithmesdic of atomic parameters,

16



pairwisee Lennard-Jones parameters were calculated as a geome#imrcahatomic parameters:

5 E12=+€1-& (36)

Calculations were performed on the Intel(R) Xeon(R) CPU X5658 e clocking 2.67GHz.

For calculation of the direct and inverse fast Fourier tfamss the FFTW3 library was useg.

Results

Finding the optimal parameters for the multi-grid solver

We performed 3DRISM calculations for infinitely diluted aqgus solutions of four compounds:
argon, methane, methanol and DME. To determine the optimadlgarameters we performed
solvation free energy (SFE) calculations on grids withed#ht spacing parameters and different
buffers. In Figure 3 the dependence of calculation errortherspacing parameter is shown. For
the calculations we used several different grids with thedikuffer of 8A and different spacings
which vary from 0.1A to 2A . Errors were calculated as absolatiues of the differences between
SFEs calculated on a current grid and SFEs calculated onettyefime grid with the spacing of
0.05A and the buffer of 8A . The results show that the the giitti ¥he spacing of 0.2A provides
an error that is less than 0.1 kcal/mol for all solutes whichdceptable for the most of chemical
applications. Thus in our work we use the grid with spacing.8f .

In Figure 4 we show the dependency of calculation errors emytid buffer. The calculations
were performed on grids with fixed spacing of 0.2A and diffetuffers varying from 8A to 20A .
Errors were calculated as differences between the SFEdatdd on the current grid and the SFEs
calculated on the very fine grid with spacing of 0.2A and buffie30A . The figure shows that the

grid with the buffer of 15A is enough to provide the accurat$BE calculations< 0.1kcal/mol.
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Figure 3: Dependency of the calculation errors on grid sgpat constant buffer (84 )
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Figure 4: Dependency of calculation errors on the grid uffith constant spacing of the grid

(0.2A).

Computational benchmarks of different 3DRISM solvers

To check the numerical performance of the proposed multtiagorithm we performed 3DRISM
calculations for infinitely diluted agueous solutions aj@m, methane, methanol and DME using
the Picard iteration, the MDIIS, the MG-Picard and the MG-NM®methods. For the Picard and
the MDIIS methods the grid with spacing of 0.2A and buffer BAlwas used. For the multi-grid
methods (MG-Picard, MG-DIIS) we used the scheme Eg. (33) tmib enlargements: we started
from the grid with the buffer of 7.65A , then moved to the griithwthe buffer of 10.71A and

finished iteration on the grid with the buffer of 15A . Solut®on the girds with smaller buffers

18



were used as initial guesses for the grids with larger bsiffiéor each buffer we used the multi-grid
algorithm which uses 3 different grids (depth- 2). All calculations were performed on the same

personal computer, Intel(R) Xeon(R) CPU X5650 with clocking7ZHz.

Table 1: Computation expenses of 3DRISM calculations withRteard iteration, MDIIS, MG-
Picard and MG-MDIIS methods.

Compound | Picard iteration | MDIIS | MG-Picard | MG-DIIS

argon 1148 sec 167 sec| 46 sec 50 sec
methane 1484 sec 154 sec| 149 sec 82 sec
methanol 1857 sec 416 sec/ 165 sec 83 sec

dimethyl ether 4462 sec 509 sec| 241 sec 133 sec

Computational expenses on solving 3DRISM equations for ebitteanvestigated four meth-
ods are presented in Table 1. These results show that thedRiegation is the least efficient
method, while the most efficient is the MG-MDIIS method. Weenthat the multi-grid methods

in all investigated cases are more efficient than the oreergethods.

I oS I VG Picard ] MG MDIIS

JJd

Ar methane methanol DM

N
o

=
o

speedup [Times]

&)

Figure 5: Speed up of the calculations by using the MDIIS,Mt&-Picard and the MG-MDIIS
methods as compared to the Picard iteration method.

Figure 5 compares computational performance of the MDW8, MG-Picard and the MG-
MDIIS with the Picard iteration method. The figure shows floatall four compounds multi-grid
methods give more than 10 times speedup while for three sétfer compounds the MG-MDIIS
method is more than 20 times faster than the Picard iteratgthod. Average speedup factors with

respect to the plain Picard method for the MDIIS, the MG-Rland the MG-MDIIS methods are
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correspondingly 7.4, 16.2 and 24.2. The most effectiveadMit-MDIIS method that is in average
about 3.5 faster than the MDIIS method. Difference betwé&ennulti-grid methods is not very
large: the MG-MDIIS method is in average only 1.5 times fa#tan the MG-Picard method. The
results show that the multi-grid scheme can be effectivedun combination with different types
of coarse-grid iteration methods for solving the 3DRISM emures for aqueous solutions of small

non-charged molecules.

Computational benchmarks on a large set of organic molecules

The main goal of this part of our study was to investigate trexall efficiency of the new method
in a view of large-scale practical applications like, e.gygical-chemical profiling of large sets of
organic compounds. We performed an additional benchmatkested the efficiency of the new
algorithm on a set of organic molecules as well as the acgwhthe SFE prediction. We esti-
mate average computational expanses for the 3DRISM calansatlso check whether numerical
accuracy of the calculations is enough for accurate esbmaft SFE.

We have chosen a set of 99 organic molecules. This set of nilekets a part of the set used
in Ref. 21. The set includes alkanes, ketones, alkyl-berszeteohols, alkyl-phenols, ethers and
other (polyfunctional) molecules. Quantity of atoms in swlles of the set varies from 5 to 31.
Average number of atoms in a molecule is 16. The full list ofenales in the set is provided in
the supporting information. The Antechamber &fdrom the Amber Tools 1.4 Packagfewas
used for molecular structure optimization and assigningé&d&-ield parameters. Structures of the
molecules were optimized by using the AM1 mettRSdhtomic partial charges were calculated by
using the bond charge correction(BCC) met8841LJ parameters from the General Amber Force
Field (GAFF)? were assigned to the solutes. The benchmark calculatiorsirfiple molecules
reported above show that the most effective is a combinatidhe multi-grid and MDIIS(MG-
MDIIS) methods. Therefore, we use the MG-MDIIS algorithnour benchmarking of the overall
efficiency of the method.

Figure 6 shows dependency of the computational time speM@&MDIIS 3D-RISM calcula-
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Figure 6: Dependency of the computational time spent on MGHB! calculations on the
molecule number of atoms for 99 organic molecules from tleseh molecule set.

tions on the number of atoms in a molecule. The plot showghleatomputational time can essen-
tially vary for different molecules even if the moleculevbdhe same number of atoms. However,
this somehow counterintuitive result has a straightfodvaxplanation. Indeed, convergence of
the algorithm depends not only on the number of atoms but @isthe chemical composition
of a molecule and its structure, particularly on the distiidn of atomic partial charges and the
molecule surface accessible area. This is illustrated &ydhbults shown in Figure 3 and Figure 4
that show different error dependencies for polar and ndarpuoolecules. Also, even if two dif-
ferent molecules have the same number of atoms, they mblyasté rather different shapes. This
can result in different grid sizes for them. More compactevales need smaller grids than the
less compact molecules, even if they have the same buffetherghme number of atoms. There-
fore, combination of these two factors causes this sigmifidaviation of computational time for
molecules of the same number of atoms. However, the comgughtime for any molecule in the
set is still less than 6 minutes. Average computational tsrsme 3.5 minutes (3 min 27 sec).
We used the 3D RISM correlation functions calculated by MGiMEDmethod as an input for
SFE calculations for all molecules from the above mentiosetdof 99 organic compounds. We
used 25 molecules as a training set and the rest of the setdlé¢uhes) as a test set. The lists of all
compounds in the training and test sets are given in the stipgpanformation. For accurate SFE

calculations we used the Universal Correction (UC) methotwlas introduced in recent papers
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Ref. 20,21. We tested two modifications of the UC method. Tls¢ dine (UC-KH method) is
based on the Kovalenko-Hirata (KH) Free Energy functior@l B3). The second one (UC-GF

method) is based on the Free Energy calculations using thesia Fluctuations (GF) formuf:

Nsite

8Gor = pkaT 3 [ (~Sha(r)ca(r) —ca(r))cr 37)
a=1

wherekg is the Boltzmann constank, is the temperatureg is the number density of a bulk solvent.
In the UC-GF methodGGE) and in the UC-KH methodAG{H) SFE is calculated by using the
following relations:

AGSE = AGgr +acepV + bar (38)
AGSE = AGkH +akHpV + bku (39)

whereV is the partial molar volume of the moleculgsg, ber, akn, bk are calculated by using
the linear regression method to fit experimental data. &ariblar volume of a molecule was

calculated by the following formul&49°

1 © Nsite
V= <E+47To/(goo(r)l)r2dl’) (1—pa;/Rgca(r)dr) (40)

whereggo(r) is the oxygen-oxygen RDF of bulk water.

Using the training set of compounds, the following valuesa#fficients were obtained by the
linear regression fitting procedure?! : agr=-2.23 kcal/molbge=1.28 kcal/mol for the UC-GF
method andaky = -3.51 kcal/mol,bxy = 0.81 kcal/mol for the UC-KH. Figure 7(a) and Fig-
ure 7(b) shows the correlation between the experimentakes#éiGey, and the calculated values
AGSE andAG(H. The correlation coefficient is 0.97 for the both methods. tRoean square
deviation (RMSD) on a test set is 0.96 kcal/mol for the UC-GFhudtand 0.84 kcal/mol for the
UC-KH method. Accuracy of predictions is comparable withuaacies of experimental meth-
0ds!?66 and corresponds to accuracies of current state-of-theattiods for SFE calculations

by molecular dynamic®~"%and other advanced molecular theories (e.g. energy refietiss
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Figure 7. Correlation of experimentally measured SFEs withSFEs values calculated by the
Universal Correction method for the investigated set of migeolecules.

method by Matubayasi and Nakah&ra3.%74 Thus we show that the numerical accuracy of the

algorithm is enough for SFE calculations and parameteoizaif calculation results.

Conclusions

In the paper we proposed a new multi-grid based method whitlesthe 3DRISM equations. To
determine the optimal grid parameters we performed 3DRISkutsions for infinitely diluted
aqueous solutions of argon, methane, methanol and dimethgt. We showed that on the grid
with the spacing of 0.2A and the buffer of 15A the maximal eisoless than 0.1 kcal/mol. We
tested two modifications of the multi-grid algorithm: MGeRid and MG-MDIIS methods. We
compared the numerical efficiency of the multi-grid aldgamt with the the numerical efficiency
of the standard Picard iteration method and the MDIIS metiid showed that the MG-MDIIS
algorithm is more than 24 times faster than the Picard irahethod and more than 3.5 times
faster than the MDIIS method.

In turn, efficiencies of the MG-DIIS and MG-Picard methodsra differ very much. The
MG-DIIS method is about 1.5 times faster than the MG-Picaethod. We suggest that the most
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effective MG-MDIIS method can be used in the future as a fast for calculations of Solvation

Free Energy for organic molecules. To support this statémemperformed 3DRISM calculations
for aqueous solutions of 99 organic compounds. For all camgs in the set the computational
time does not exceed 6 minutes per one molecule while thageeomputational time is only 3.5
minutes per one molecule on a standard personal computetaMi@ated solvation free energies
by using GF and KH expressions with the universal partialaneblume corrections (UC-GF and
UC-KH methods). We showed that calculated and experimeniakg of solvation free energy
are strongly correlated to each other (correlation coefficis 0.97). RMSD error for the test set
of compounds is less than 1 kcal/mol for both UC-GF and UC-KHho@s$. The performed tests
show that the proposed algorithm can be used for fast andatequredictions of aqueous solvation

free energies of neutral molecules.
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